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Abstract

Tracking is the task of identifying an object of interest and detect its position over time, and has

numerous applications like surveillance, security and traffic control. In present times, unmanned

aerial vehicles (UAV) have been more and more common which provides us with a new and less

explored domain, with an ideal vantage point for surveillance and monitoring applications.. Aerial

tracking is a particularly challenging task as it introduces new environmental variables such as

rapid motion in 3D space. We propose a new deep learned tracker architecture catered to aerial

tracking.

First, a study of six state-of-the-art deep learned trackers has been performed using the Visual

Object Tracking benchmark. This study determined the weaknesses of said trackers in front of

a long-term aerial tracking task. Mainly, severe motion, target disappearance and high degree of

appearance change were the principal causes for drift or loss of track.

Siamese correlation filter based tracker to perform identification and target matching across

subsequent frames. In addition, a multi-scale object detector has been implemented to improve

identification accuracy and template update. The object detector goal is to output a score map

that will validate or penalize the tracker’s correlation map, and improve robustness against drift,

scale change and occlusion.
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Chapter 1

Introduction

1.1 Motivation

Visual object tracking is the task of recognizing an object and match its position within subsequent

frames. Visual object tracking is a challenging task in computer vision and has many applications

in the industry. From security and surveillance to traffic control, photography and video, tracking

has gathered a great research interest. In the present time, correlation based tracker are the state

of the art technology. [CLK15]

Unmanned aerial vehicles (UAV) have been increasing in the airspace. Initially developed for

military purposes, they provide an ideal vantage point for surveillance, security and traffic control

applications[SSAF+18] [IMJ+15]. However, current research do not test for long term tracking or

UAV view-points.[MSG16] An aerial moving camera introduces a new set of variables that are yet

to be addressed by a visual system.

Figure 1.1: .Tracking on challenging data: object deformation and scale change in dataset car16

1
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Figure 1.2: .Tracking on challenging data: object disappearance and clutter in dataset car3

Traditionally a tracker outputs a bounding box around an object of interest. Previous works

are focused on short-term sequences (tens of seconds) without object disappearance and complex

transformations[KLM+17]. Specifically, long term tracking is focused on sequences that are longer

than a minute with frequent object disappearance and appearance change.[VBH+18] In this work,

we propose an original and intelligent vision system that identify and track a vehicle from an UAV

in high speed.

Deep learning has accomplished great advancements in computer vision. We propose a tracker

that fully takes advantage of the power and expressiveness of deep learning.

1.2 Goals

Tracking is a known an popular challenge in the computer vision research area. The goals of the

proposed model is to identify and track fast moving object in real-time while the UAV is airborne.

Tracking has to deal complex appearance change, such as out-of-plane rotation, non-rigid de-

formation, camera perspective, motion blur, illumination changes, occlusions and clutter [WLY13].

Due to relative motion of the target to the UAV in 3D space, object appearance can dramatically

change from one frame to the other. Many models use an internal model that is updated every

frame. Accuracy of the model decreases over time with the accumulation of error, resulting in a

drift. Moreover, motion models are harder to learn in order to separate target motion from UAV

motion. As a result, the proposed system should have a better internal template update.

Occlusion by ground obstacles such as bridges, buildings or signs is a second hurdle to the

success of a track. The system must re-detect the object in the next frame after occlusion. Re

2
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detection after occlusion is required.

Because of the newness of UAS-based tracking, we have to conduct our own benchmark and

own evaluation, catered to UAS-based tracking.

1.3 Contributions

In this work, we integrate the techniques for Discriminative Correlation Filter tracking using a

fully convolutional siamese network with a very fast deep learned object detector, and develop

a long-term, error-free vehicle tracker for aerial sequences. When compared to the competition,

increased precision and IOU has been observed. The proposed approach can detect and track a

vehicle of interest in a long-term sequence, even with object deformation, scale variation, object

disappearance and rapid motion. The main contributions are three-fold:

• The new model is able to generate an adaptive scale bounding box in real-time around the

vehicle being tracked, as the target changes dimensions and appearance.

• Our model, using multi-scale detection can handle object disappearance and long-term track-

ing

• The proposed system runs in real-time with an FPS greater than 10.

1.4 Outline

In chapter 2, Past research on state-of-the-art deep learned trackers and object detectors is presented

In chapter 3, the fully-convolutional siamese networks architecture will be detailed.

In chapter 4, real time object detection will be thoroughly studied. End to end training will

also be explained.

In chapter 5, our novel system for robust aerial tracking will be presented. A forward pass will

be detailed for better understanding and detailed implementation is discussed.

Chapter 6 explains the experiments, methodology, learning process, observations and results.

A study of the performance of our intelligent system, along with 6 other competing state-of-the-

art trackers is performed in 7 challenging sequences. Quantitative and qualitative results are also

shown.

3
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Finally, chapter 7 reviews the advantages and shortcomings of our tracker. Future prospects

and applications along with further improvements are also presented.

4
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Chapter 2

Literature Review

Traditionally, object tracking is following a Tracking-by-detection paradigm. In other words, track-

ing is divided into two steps.

First, object detection, where the the target is identified. We assess its location, dimensions

and appearance. Then, we try to match frame by frame it’s appearance by outputting a bounding

box surrounding the object of interest. The tracking is successful when the bounding box exists at

every frame of the sequence, and the object is perfectly within the prediction.

2.1 Object Detection

Object detection is equivalent to the separation of an object of interest from the background in

an image.[ST17] It has to take into consideration its position and dimension in order to output

a accurate prediction. In recent years, the rise of deep learning has rendered obsolete traditional

object detection. In the past object detection would be based on mathematical models, describing

low level features such as histogram of gradients, edge detection etc. [ST17] for object detection.

The deep learned approach takes advantage of the expressiveness and robustness of feature

representation with convolutional neural networks (CNN).

Deep learned object detection are broadly classified as two categories [ZZtXW18].

In a region based approach,[GDDM14] [Gir15] features are extracted at different scales resulting

in regions of interest with a finer grain at each iteration. Then detection is performed on the best

region of interest.

5
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On the other hand , one-shot detection, where the image is processed in one stage, such as

[RDGF15] [RF16] [LAE+16].

2.2 Object Tracking

Because of their impressive high-speed, correlation lters have attracted a great deal of interests in

object tracking. In 2017, 49 percent of the trackers submitted to VOT applied a discriminitative

correlation filter approach. [KLM+17]

Discrimintative Correlation Trackers are based on the same approach. Detection and matching

is done from frame to frame by computing a correlation between an internal representation of the

target and a candidate patch.

CRSDCF [LVZ+18] is using low level features, Historgram Of Gradients and color-names for

template embedding, ensuring spatial reliability. Thus improving the discriminative correlation

response.

Other trackers rely on a deep neural network method to perform template embedding, For

instance, Gundogdu et al. [GA17] have proposed a standard CNN to fine-tuned for correlation-

based target localization lter, which works by trying to nd the best features that maximizes the

discriminative correlation response. It uses an optimized backpropagation algorithm to perform

online learning on the target features. Thus improving correlation response and robustness in case

of appearance change.

Bertinetto et al, [BVH+16] have proposed a model with an original fully-convolutional Siamese

network, trained offline on the ILSVRC15 dataset, to tackle object location. In practice, the

network is using an efficient sliding-window evaluation in order to locate the object in a search

area.

the ECO [DBKF16] tracker takes advantage of CNN feature extraction to match target and

observation from frame to frame. It aims to simplify convolution computation by introducing three

algorithms :

1. a factorized convolution operator, reducing the number of parameters in the model

2. a compact generative model of the training sample distribution, that dramatically lowers

memory overhead and time complexity, while improving the resulting distribution

6
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3. a conservative model update strategy with improved robustness and reduced complexity.

Two other top performing trackers also adopt the ECO tracker. CFWCR [HFZ+17] exploits

the CNN feature extraction to calculate the confidence score. It performs feature extraction in

multiple channels, resulting in multiple feature maps. Each feature map extracted is normalized

and a weighted convolution from each feature are summed to produce the final response.

Finally, gNet [KLM+17] integrates GoogLeNet CNN for feature extraction with SRDCF for

spatial reliability and ECO model. the Spatially Regularized DCF (SRDCF) address boundary

effects by penalizing coefficients residing outside the target region.

7
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Chapter 3

Fast Real-Time Object Detection

In this chapter the one-shot object detector You Only Look Once (YOLO) [RDGF15] will be

detailed. Traditionally, object detection aims to separate an object of interest from the background.

The role of object detection in the tracking task, consists of extracting the features of the object,

effectively learning an internal representation. During tracking, this representation is matched

frame by frame, generating a full track when combined.

The YOLO model directly predicts bounding box and class probabilities. Previous methods

like recurrent CNN used a multi step approach with region of interest. This is slow to compute and

harder to train. YOLO is performing localization and classification in one step and a single neural

network [RF16].

YOLO was selected because it can run at high speed (¿100 frames per seconds) , with an

accuracy equivalent or better than the competition[RF16].

3.1 Architecture Overview

YOLO divides the the image in to an SxS grid, with N proposal bounding boxes and C different

classes. For each grid cell, the network generates B bounding boxes. For each proposal box, the

network outputs a confidence score, or the probability of an object being detected. That equates

to a vector of 5 elements [x, y, w, h, confidence]. The (x, y) coordinates are the center of the box,

relative to the grid cell location, and (w, h) are the dimension of the box. Those coordinates are

normalized respectively to the position of the cell in the grid and to the image size. Meaning

8
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Figure 3.1: Architecture Overview [RDGF15]

x, y, w, h ∈ [0, 1].

The confidence score reflects the presence or absence of an object in the bounding box, and is

defined as :

Confidencebox = Pr(Obj) ∗ IOU(pred, truth)

In addition, C conditional class probabilities are computed. In total, we have S ∗S ∗B bounding

boxes, with C associated class probabilities, resulting in SxSx(B ∗ 5 + C)

24 convolution layers extract features and reduce the dimensions to a S ∗ S tensor. YOLO

performs a linear regression using two fully connected layers to make a S ∗ S ∗ 2 bounding box

predictions.finally, we keep the boxes with a high confidence score.

The class confidence score is computed as:

Confidenceclass = Confidencebox ∗ Pr(C|Obj)

A linear activation function is used in the last layer and a leaky ReLU is used elsewhere.

9
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Chapter 4

Fully Convolutional Siamese Networks

In the past, object tracking has been addressed by learning an internal representation of the ob-

ject’s appearance and dimension exclusively online, using the video itself as the unique training

data[vZLK16]. More recently, several attempts to exploit the expressiveness of deep convolutional

networks[ZZtXW18] have been made.

However, a classical approach of artificial neural network (ANN) training is not feasible in real

time. Training an ANN requires Stochastic Gradient Descent to optimize a loss function, and

is traditionally made offline because of heavy computations. Doing a training online to adapt

the weights of the network, would severely compromise the performance of the tracker in real-

time.[BVH+16]

The Fully Connected Siamese Network, proposes to address the tracking task as a similarity

problem. It compares 2 image patches and solves a cross-correlation. A high correlation means

that they contain the same object, thus matching (and tracking) is performed.

SiameseFC combines a siamese architecture for template matching, with a CNN for feature

extraction trained on the ILSVRC15 dataset, and a discriminative correlation filter.

The Discriminative Correlation Filter is a method that generates a filter to classify images

and their in-plane shifts. It is applicable to a real-time application since it is computed in the

frequency domain after a Fourier transform. The computations become trivial, enabling the filter

to be re-trained for every frame.

However, previous works that use the Correlation Filter have exploited features that were

handcrafted or trained on a different task. By solving the regression problem directly with the

10
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features extracted by the CNN, we achieve a closed-loop system. This allows embedding deep

features that are strongly represented in the discriminative correlation filter, thus improving the

discrimination.

4.1 Architecture Overview

Figure 4.1: Architecture Overview [BVH+16]

4.2 Image and target embedding

Two identical CNN fρ are used for feature extraction and dimension reduction. They are trained

offline to compare two image patches and determine if they contain the same object. The intuition

is that a expressive deep embedding will allow an accurate internal representation thus an accurate

matching of objects via similarity.

The Siamese network considers a pair of two images, (x′, z′). With x′ the representation of the

object of interest, and z′ the search area. Two feature maps are generated and then cross-correlated.

A cross-correlation operation computes the similarity at all translated sub-windows on a dense grid

in a single evaluation, rendering the tracker immune to object translation in the plane.

gρ(x
′, z′) = fρ(x

′) ∗ fρ(z′) (4.1)

The goal is to maximize the value of the response map at the target location. In practice, this is

equivalent to searching the pattern x′ in the image z′. At run time, the pattern is extracted from

11
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the last bounding box, and the test image is a crop centered on the previously estimated position,

with a size 4 times larger than the dimension of the object of interest.

As a protection mechanism against appearance change, the template is updated with a rolling

average on the current and previous template.

4.3 Correlation Tracking

In order to maximize output response, the correlation filter algorithm is used. A linear classifier is

trained on x′, to discriminate between the object and its translations. A correlation filter kernel

is generated from the feature map extracted from x′, by solving a ridge regression in the Fourier

domain. let w(x) be the Discriminative Correlation Filter function, that generates a template w, s

and b scale factors to compensate for cropping and dimension change. The response map amounts

to:

gρ(x
′, z′) = sw(fρ(x

′)) ∗ fρ(z′) + b (4.2)

4.4 Correlation Filter

Let x be and image with values in Rm∗m, and w the correlation filter with values in Rm∗m. We

want to minimize: ∑
u∈U

(〈x ∗ δ−u, w〉 − y[u])2 = ||w ? x− y||2 (4.3)

x ∗ δ−u . This equation can be understood as the distance between the response map generated

by the filter w and the circular shift x ∗ δ−u of the example image x, and the target signal y.

By introducing regularization parameter λ to prevent over fitting, the problem is to find:

arg min
w

1

2n
||w ? x− y||2 +

λ

2
||w||2 (4.4)

The optimal template w must satisfy the system of equations :


k = 1

n(x ? x) + λδ

k ∗ α = 1
ny

w = α ? x

(4.5)

12
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where k can be interpreted as the circulant linear kernel matrix, and α is a signal comprised of

the Lagrange multipliers of a constrained optimization problem. In the Fourier domain the solution

to equation 4.5 is:


k̂ = 1

n(x̂∗ ◦ x̂) + λ1

α̂ = 1
n k̂
−1 ◦ ŷ

ŵ = α̂∗ ◦ x̂

(4.6)

Where x̂ = Fx is the Discrete Fourier Transform of x, x∗ is the complex conjugate, ◦ is the

element-wise multiplication and 1 is a signal of ones. It is critical to note that because we’re working

in the frequency domain, online learning is now possible, as complex convolutions and correlations

are replaced with element-wise multiplications and additions. Thus, the template can be retrained

efficiently on every frame, without sacrificing real-time performance.

13
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Chapter 5

Proposed System

In this Chapter, the inner working and implementation of our tracker is explained.Our system

integrates an object detector (in pink in 5.3) with a Siamese Correlation tracker (in green 5.3).

First, initialization is done on the first ground truth. Then the Siamese network extracts en

exemplar x and a search area z, and the trained DCF estimates the position and dimension of the

object. An anomaly is detected when the quality of tracking drops. Low response triggers the re-

detection with generation of a score map, followed by updating the template and the new position

and dimension of the target object. The new object is then fed to the DCF block for correlation

filter training. The proposed re-detection system improves significantly tracking under challenging

conditions.

5.1 Algorithm of our proposed tracker

The pseudo code for the tracking algorithm is shown in Algorithm 1. Input images are stored in

a folder and loaded in memory during evaluation.

Another folder containing the sequence frames with a rectangular bounding box around the

target is created during run-time. Four functions make the algorithm.

The tracker is based on a real-time anomaly detection to counteract drift and occlusion. Thus,

a real-time anomaly detection algorithm was devised. This policy triggers the activation of the

re-detection, re-initialization and adaptive scaling. The workings of this algorithm will be detailed

in a later section.

14
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The main function initializes the tracker and object detector with the parameters.

The second function siamese is performing the correlation operation between the exemplar and

the template and returns the score map.

The function object detector performs an object detection on an image and returns several

bounding box in a json file, with the coordinates of the center and the object width and height.

For each detection, we select the bounding box with the highest confidence score.

The function template, trains the correlation filter and outputs a new kernel.

Finally the function update position takes as input the absolute position of the object withing

the frame and applies displacement and scale transformation according to the score map.

15
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Algorithm 1: Tracker Algorithm

Data: Image frames from the video sequence, x sz the size of the search area, n the number

of frames, t the correlation filter response threshold

Result: Bounding box around target object in each of output image frames of the video

sequence

initialization;

for i in range(n):

initialize scale factors;

augmentation map = zeroes(x sz, x sz)

frame, scores, search area = sess.run([siamese], frame, templatem, pos x, pos y)

/* we calculate the range of correlation values */

min score = score.min() max score = score.max()

/* we trigger re-initialization if response quality drops */

if maxscore−minscore ≤ t:
detection = object detector(search area)

for x, y coordinates in detected bounding box :

augmentation map[x][y] = max score

target h = detection.height() target w = detection.width()

score update = (1 -learning rate) * score + (learning rate) * augmentation map

pos x, pos y = update position(pos x, pos y, score updated, search size)

bbox[i,:] = pos x-target w/2, pos y-target h/2, target w, target h

if pos x ≥ frame.width()orpos y ≥ frame.height()ormax score ≤ 0:

detection = object detector(frame)

targeth = detection.height()

targetw = detection.width()

pos x = detection.pos x

pos y = detection.pos y

bbox[i:] = detection

/* template update */

new template = sess.run([templates], pos x, pos x,targeth, targetw, frame)

template = (1 -learning rate) * template + (learning rate) * new template
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5.2 Object Detector training

For our task, we need the object detector to recognize cars from a multitude of angles. Not only on

ground level, but also at altitude and overhead. We retrained the YOLO network on two datasets:

MIO-TCD for low-angle as in figure 5.2b and COWC for overhead view, as shown in 5.2a.

MIO-TCD This dataset has 786702 images. Divided in two tasks, classification and localization.

Eleven classes are labeled. (Articulated truck, Bicycle, Bus, Car, Motorcycle, Motorized Vehicle

(i.e. Vehicles that are too small to be labeled into a specific category), Non-motorized vehicle,

Pedestrian, Pickup truck, Single unit truck, Work van)

This dataset was used to learn car appearance on low altitude, which is encountered when the

drone is transitioning from ground level to higher altitude (car6, car16). Training was done on 1300

epochs.

COWC Contains 32716 images. It consists of high altitude pictures of cars in different contexts

(parking lot, highway, street). This dataset was used to learn the overhead appearance of cars that

can be encountered when the UAV is at maximum altitude, as in dataset car3 and car9. Training

was done on 500 epochs.

5.3 Re-detection

The object detector is triggered when the tracker score is not satisfying. The score has values in

R, thus the max value of the score is not a good metric of response quality. Instead, we define ∆,

the salience of the score represented by the range of values in the correlation response.

∆ = max−min

When ∆ drops below a threshold t, we evaluate the object detector on the search area. The

best detection is used as a re-initialization input, providing a new score, new target dimensions and

a new template.

online update If the max score drops below zero, or if the predicted position is out of the frame,

we perform a re-detection over the whole image.
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The object detector a new position with a set of coordinates (x, y), and a height w and width

w. We use this new prediction as a new reference to generate an augmentation map but also to

scale dynamically the search area and bounding box.

Algorithm 2: Adaptive Scale Mechanism

Data: h and w the height and width of the detection, x sz the size of the search area,

target h and target w the height and width of our internal representation

Result: adaptive scale bounding box and search area

if target h ≤ htarget w ≤ w:
detection = object detector(frame)

targeth = h

targetw = w

if x sz ≤ hx sz ≤ w:
x sz = 1.5 * x sz

5.4 Augmentation Map

The Siamese FC relies on the correlation response to determine target position. In our system, we

propose to augment the correlation response with the re-detection.

We generate an augmentation score map using the new initialization input provided by the

object detector. For each pixel with coordinate (x, y), where x and y belong to the object detector

bounding box, we fill the new score map with the maximum value of the existing score map. The

augmentation map mimics the desired response we use to train the filter. Basically it is a Dirac

signal centered on a new position.

A weighted sum is performed over the new score and the present score, yielding a more accurate

response.

5.5 Implementation

Each sequence is stored as images named sequentially in separate folders. Initialization is performed

on the first ground-truth, which generates a template. The correlation response threshold parameter

t is set at 10 after learning on the datasets. The learning process will be detailed in chapter 6.

During re-detection, we perform fast object detection with YOLO within the search area. If loss
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of track is detected, the re-detection is performed on the whole picture. Output images with

rectangular bounding box around the object are stored in a similar fashion as the input images.
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Figure 5.1: Architecture of our proposed model.

(a) COWC (b) MIO-TCD

Figure 5.2: A comprehensive appearance of the car is learned with 5.2a and 5.2b
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Figure 5.3: Score Augmentation method.
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Chapter 6

Experiments and Results

In this section, the preliminary study, the training phase and a comparison between our system

versus the original system will be presented. The currently most widely used methodologies devel-

oped from three benchmark papers: the Visual Object Tracking challenge (VOT) [?], the Online

Tracking Benchmark (OTB) [WLY15] and the Amsterdam Library of Ordinary Videos (ALOV)

[SCC+13].

First, we will explain the comparison done with six state-of-the-art trackers performed with the

VOT methodology, on public dataset and on classified data. This preliminary study will explain the

selection of siameseFC. The trackers evaluated were CSRDCF, CFCF, SiamFC, ECO, CFWCR,

gNet.

Then the learning process of our tracker will be explored. First, the detector was retrained,

second, we learned a re-detection threshold for our anomaly detection policy.

Finally a quantitative and qualitative comparison is performed, highlighting the performance

of our system.

6.1 System Configuration

The proposed algorithm is implemented in Python 2.7 and Tensorflow 1.6 with and in Intel Core

i7-3930 CPU @ 3.20Ghz, 64 GB RAM, NVIDIA Titan X, 12 GB VRAM.

The VOT benchmark has been performed with Matlab R2017a, and the object detector has

been implemented using C++ and Darknet.
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6.2 Datasets

6.2.1 Public Datasets

Our study pertains to long-term ground object tracking using an unmanned aerial vehicle. Available

benchmark datasets do not represent our problem, as they are catered to tasks like face tracking,

dancer tracking, object tracking, often times with a ground perspective and a fixed point of view.

We require a moving elevated camera with moving vehicles to be tracked. Moreover, we focus

exclusively on sequences longer than a minute. A comprehensive review was done to find video

sequences fulfilling such conditions.

Seven sequences were picked from the UAV123 dataset and Urban Tracker dataset. car1 (2629

frames), car3 (1717 frames), car5 (745 frames) , car6 (4861 frames) , car9 (1879 frames) , car16

(1993 frames), strene car22 (802 frames).

Those sequences reflect challenging conditions defined in [WLY13]. Those include low resolution,

rapid camera movement, rapid object movement, scale change, rotation, partial/total occlusion and

clutter.

6.2.2 Protected Dataset

In addition to public available dataset, a collection of protected dataset was evaluated in the

preliminary study. These sequences represent high altitude military grade surveillance sequences

and were provided by Toyon.

6.3 Visual Object Tracking Benchmark

The Visual Object Tracking (VOT) toolkit is a MATLAB benchmark tool that evaluates standard-

ized tests on an array of trackers. It is one of the state-of-the-art evaluation benchmark with OTB

and .

We performed the baseline benchmark on public and protected dataset. The baseline benchmark

is initializing the first frame with the ground truth and let the trackers run until failure. After each

failure, the toolkit re-initializes the tracker to the ground truth on the frame where failure happened.

Three performance metrics were evaluated in order to rank the performing trackers. These

parameters are:
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1. Robustness, with a prediction from the first frame to the last without failure.

2. Accuracy, with minimal error between the ground truth and the tracking result

3. Execution speed, measured in frames per second, to evaluate performance in real-time.

Execution speed is verified easily during run time, by comparing their respective speed. How-

ever, comparing the first two criteria is a much more complex task. The VOT evaluation benchmark

uses several metrics to perform comparison. They are defined as accuracy, robustness and expected

overlap. At time step t, with a predicted bounding box ATt and a ground-truth bounding box AGt ,

the overlap Φt is:

Φt =
AGt ∩ATt
AGt ∪ATt

Accuracy is defined the average overlap between the result bounding box and the ground-truth

bounding box.

It is averaged on successful tracking periods, yielding a single average accuracy per frame.

Robustness is evaluated by the number of failures. A failure is defined by the number of times

the tracker drifted and had to be reinitialized. A failure is detected when the overlap reached zero.

6.4 Object Tracking Benchmark Benchmark

The OTB approach consists of initializing once with ground-truth from the first and letting the

trackers to perform until the end of sequence. Contrary to the VOT approach, there is no re-

initialization.

The comparison of tracking performance with the ground-truth is expressed in therms of Pre-

cision, Precision Area Under Curve, and Intersection Over Union (IOU).

Precision is defined as the percentage of frames where the euclidean distance between the center

of the the ground truth bounding-box and the center of the prediction for the tracked object is

below a set threshold. In our test we chose the threshold to be 20 pixels, which is the average

dimension of our object.

Precision AUC is defined as the integral of the euclidean distance between the center locations

of the tracked target and the ground-truth bounding boxes. It is representation of the tracker

overall performance.
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IOU is defined as the overlap, and is mathematically formulated as in section 6.3.

6.5 Correlation Threshold Learning

As formulated in chapter 5, we re-initialize our tracker when the response quality drops below a

threshold t. When t is high, we will re-initialize more often, but also running the risk of rejecting

good tracks. On the contrary, a low threshold will mean we will accumulate more error before

restart. Due to the complex and diverse situations encountered with UAV sequences, a balance

between a weak and strong re-detection policy has to be determined.

If the threshold is too low, the tracker is most likely to fail without re-initializing. However,

if the threshold is too high, we run the risk to rely on a wrong detection for re-initialization. We

tested a range of threshold values in order to learn an optimal value. Precision AUC (table 6.1)

and intersection over union (table 6.2) were considered as deciding factors. It is apparent that a

value of 10 for the correlation response threshold yields the best average result.

Car9, which contains full object occlusion did not perform well when the re-detection policy

was too weak. Experimentally at run time, the track was lost after occlusion happened. On the

other side of the spectrum, car3, car6 and car16, which contain extreme transformation or clutter

did not complete the track due to an aggressive re-detection policy.

6.6 Quantitative Result

Preliminary results: We perform the baseline Visual Object Tracking between the six compet-

ing trackers. Test were performed in two runs. Public dataset and protected data were evaluated

separately. Results for the public data are compiled in table 6.3.

In summary SiameseFC is better on 3 metrics over 4, it has better accuracy, expected overlap

and speed. ECO, CFWCR and CFCF earned first position in robustness.

The evaluation on protected data, that represents a real life use case, confirms the superiority of

the siameseFC architecture over the competition. In table 6.5, we can see that SiamFC has better

accuracy and expected overlap. In this case, robustness wasn’t considered, as all the competing

trackers performed equally.

By labeling various sub sequences we can isolate which factors influence tracking performance.
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We define camera motion as a rapid change in camera view, object motion as a rapid object

movement and occlusion the complete or partial disappearance of an object.

Detailed accuracy in table 6.6 and robustness in table 6.7 show 3 things:

• Occlusion has the most influence in overlap decrease and number of failures

• No tracker performs re-initialization, as occlusion introduces failure in every case.

• Camera motion introduces more drift than the target motion. Meaning that a lot of noise is

created by UAV

Summary In conclusion, our preliminary study highlighted the shortcomings of the state-of-the-

art trackers in terms of UAV-based tracking.

First, even if object motion and camera motion can cause performance issues, occlusion is the

main culprit in the decrease in accuracy and robustness.

Moreover, the test on protected data shows that the public dataset are not a good reflection

of real-life situations. The performance decreased in the order of 10, and all trackers have suffered

massive failures.

However, Siamese FC was selected as the basis of our system, as it performed with adequate

speed, was the best in accuracy and performed above average in 4 of our test sequences out of 6.

updated system vs vanilla We test our system against the vanilla SiamFC architecture. Results

are detailed in table 6.4. Our tracker performs significantly better on challenging sequences car6,

car9 and car16, while keeping good results in other sequences. In out tests, car1 could not reinitialize

properly.

We achieved a dramatic improvement in both Precision and overlap. Car6 is the sequence with

the most improvement with a precision jump from 5.33% to 45.66%, an overlap increase from 14.57

to 52.42.

6.7 Qualitative Results

The tracker has to cope with a variation of attributes described in [WLY13], such as illumination

variation, scale variation, occusion, deformation, motion blur, fast motion, in-plane rotation, out-
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of-plane rotation, object disappearance, clutter and low resolution. Testing has been performed on

all the 6 public dataset, and we present and discuss our results in this section.

6.7.1 Rapid Appearance change

Figure 6.1 present our tracker in action with dramatic appearance change, out-of-plane rotation, low

resolution and motion blur. Our re-detection scheme improves the internal object representation,

resulting in better performance with tracking in subsequent frames.

Without the update policy, the vanilla tracker struggles in keeping a relevant object represen-

tation, resulting in significant drift as seen in figure 6.4a and 6.4b.

6.7.2 Occlusion, object disappearance

Occlusion has been determined as the major factor of failures. Our tracker show robustness against

occlusion in figure 6.2. Whereas other trackers will fail. Our re-detection algorithm allows the track

to be initialized after occlusion, resulting in better performance.

In the other hand the vanilla tracker does not detect a drop in detection quality, and learns the

occluder as the new template as shown in figure 6.4c .

In figure 6.3, we show that our tracker tackles successfully complex camera movement and

partial object disappearance.

Conclusion After extensive experimentation we found that our tracker exhibited promising result

with almost all of the attributes mentioned in [WLY13].
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Values of t

5 6 7 8 9 10 11 12 13 14 15

Car3 34.32 34.32 32.47 34.59 35.35 38.57 37.28 NA NA NA NA

Car6 1.78 1.78 1.78 NA 8.56 12.18 3.6 4.85 3.44 NA NA

Car9 NA NA NA NA 14.95 14.95 14.95 14.95 14.95 14.95 14.95

Car16 24.22 24.23 12.08 NA 21.40 23.71 22.24 11.5 NA NA NA

Strene Car22 33.39 33.39 33.39 33.39 33.39 33.39 33.39 37.84 37.84 38.38 38.38

Table 6.1: Precision AUC on public dataset with different correlation threshold

Values of t

5 6 7 8 9 10 11 12 13 14 15

Car3 50.45 50.45 46.13 50.77 52.85 59.22 50.66 NA NA NA NA

Car6 13.94 13.94 13.94 NA 20.59 52.42 17.88 17.36 20.78 NA NA

Car9 NA NA NA NA 29.77 29.77 29.77 29.77 29.77 29.77 29.77

Car16 23.46 24.02 33.27 NA 36.9 48.50 45.71 17.44 NA NA NA

StRene22 51.9 51.9 51.9 51.9 51.9 51.9 51.9 46.68 46.68 46.95 46.95

Table 6.2: Untersection over Union on public dataset with different correlation threshold

Accuracy
(rank)

Robustness
(rank)

Expected Overlap
(%)

Speed
(fps)

SiamFC 2.5 2.25 0.4402 24

Gnet 3 2.5 0.3911 10

ECO 2.5 1.25 0.3612 9

CSRDCF 2.75 2.5 0.3478 10.1

CFWCR 4.75 1.25 0.3386 10.4

CFCF 3.5 1.25 0.3347 8.2

Table 6.3: Overall baseline results on public dataset.

Precision (20 px) Precision (AUC) IOU Speed

Vanilla Ours Vanilla Ours Vanilla Ours Vanilla Ours

Car1 NA NA NA NA NA NA NA NA

Car3 95.16 71.68 34.32 28.34 50.45 42.60 36.48 12.94

Car6 5.33 45.66 1.78 12.18 14.57 52.42 35.91 13.04

Car9 42.28 64.75 14.95 21.62 29.77 40.39 33.32 12.68

Car16 47.89 79.07 15.92 27.71 16.92 53.88 37.41 13.77

strene 22 100.00 98.50 33.39 36.92 51.90 45.38 34.95 13.83

Table 6.4: OTB benchmark result: Ours vs Vanilla
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Accuracy
(rank)

Robustness
(rank)

Expected Overlap
(%)

Speed
(fps)

SiamFC 3.17 1 0.0870 NA

Gnet 8.67 1 0.0860 NA

ECO 4.67 1 0.0846 NA

CSRDCF 6.67 1 0.0713 NA

CFWCR 5.83 1 0.0854 NA

CFCF 4.33 1 0.0812 NA

Table 6.5: Overall Baseline Results on Toyon Data

Camera Motion Motion Change Occlusion Weighted Mean
Rank Overlap Rank Overlap Rank Overlap Rank Overlap

SiamFC 3 0.41 4 0.32 2 0.28 2.5 0.59

Gnet 1 0.46 1 0.51 4 0.25 3 0.55

ECO 4 0.39 2 0.42 2 0.25 2.5 0.57

CSRDCF 2 0.42 3 0.32 3 0.28 2.75 0.57

CFWCR 6 0.34 6 0.28 6 0.22 4.75 0.55

CFCF 4 0.39 4 0.30 4 0.34 3.50 0.56

Table 6.6: Detailed Accuracy Results

Camera Motion Motion Change Occlusion Weighted Mean
Rank Failures Rank Failures Rank Failures Rank Failures

SiamFC 1 0 1 0 5 2 2.25 1.65

Gnet 2 1 1 0 6 3 2.5 1.86

ECO 2 1 1 0 1 1 1.25 1.76

CSRDCF 6 2 1 0 1 1 2.50 2.69

CFWCR 2 1 1 0 1 1 1.25 1.76

CFCF 2 1 1 0 1 1 1.25 0.98

Table 6.7: Detailed Robustness Results
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Figure 6.1: Tracking with robust detection with scale variation and high degree of appearance
change
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Figure 6.2: Tracking with robust detection with total object disappearance

Figure 6.3: Tracking with robust detection with out-of-view and high degree of appearance change
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(a) car6: rapid camera motion (b) Car16: rapid object motion (c) car9: occlusion

Figure 6.4: Various failure cases in the vanilla tracker in challenging sequences
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Chapter 7

Conclusion and Future Works

7.0.1 Summary

In this thesis, we aimed to develop an aerial tracking system for ground target on long sequences.

Comprehensive research has been performed to evaluate highly accurate state-of-the-art object

trackers and detectors and the most relevant have been tested. Even if the state-of-the-art trackers

performed well on the existing reference benchmarks, they were all poorly suited to our task.

Current benchmarks focus on short-term ground to ground tracking, and our evaluation, both on

consumer grade data and classified data, has showed the ineptitude to tackle UAS-based tracking.

The Fully connected Siamese networks tracker (siamFC) from [BVH+16] showed good poten-

tial, as it was training the classifier in the Fourier Domain, using a regularized distance function

between the circular shifts of the image and a Dirac signal, kernelized correlation and circulant

matrix resulting in high speed. However, performance was shown to be poor, especially for object

disappearance and, in a lesser extent scale variation, due to fast relative motion between camera

and object, and partial and total occlusion.

An adaptive re-detection system with real-time anomaly detection was proposed to address

failures and shortcomings of the SiamFC, by exploiting the values of the correlation response.

Notably, our new system generates an adaptive bounding box around the object with high degree

in variation of dimensions and appearance, and re-initializes correctly after object disappearance.

A new score augmentation method was designed to boost the quality of the correlation response

generated by the Discriminative Correlation Filter. The propose algorithm was implemented in
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Python and Tensorflow.

Following a qualitative and quantitative evaluations on challenging datasets, we found that our

system outperforms drastically the other trackers in terms of accuracy, while maintaining a real-

time speed. In conclusion, the proposed system successfully demonstrated better tracking than

other state-of-the-art trackers.

7.0.2 Future Work

Several limitations came up during our experimentation. We identified several situations where our

method fails.

• The tracking robustness relies heavily on the quality of the object detection. Wrong detection

results in total failure of the track.

• If the object is completely out-of-view for a long period of time, re-initialization fails. The

proposed method can confuse multiple object with similar appearance and assigns a bounding

box to the wrong object. (example car1)

It is also important to note that our solution is not fully trained end-to-end, as it relies on a

threshold for re-detection. One could imagine a system that evaluates online the quality of the

correlation response, resulting in an adaptive threshold. However the question of evaluating the

quality of a correlation map is an other field of study. As of now, no exploitation of the numerical

values has been developed, and the variation in response is hard to quantify as the appearance of

the correlation maps varies a lot.

In order to adapt our tracker for other applications, we would have to retrain our object detector,

which is time consuming and resource intensive. This is an issue not specific to our system but to

all deep learning and data-driven systems.
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